Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562687

RESUMO

Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenomics approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued growth inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in promoting G1 progression.

2.
STAR Protoc ; 2(3): 100685, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34382013

RESUMO

The development of CRISPR-Cas9 screening techniques coupled with chemical inhibition of specific biological processes enables high-throughput investigation into many areas of molecular biology. We present a protocol to conduct ubiquitin proteasome system-specific chemical-genetic CRISPR-Cas9 screens in the human HAP1 cell line. This protocol can be adapted for use in other cell lines, with other compounds and types of treatments, and with any other sgRNA library. For complete details on the use and execution of this protocol, please refer to Hundley et al. (2021).


Assuntos
Edição de Genes/métodos , Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Sistemas CRISPR-Cas/genética , Linhagem Celular , Biblioteca Gênica , Humanos , RNA Guia de Cinetoplastídeos/genética
3.
Mol Cell ; 81(6): 1319-1336.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33539788

RESUMO

The human ubiquitin proteasome system, composed of over 700 ubiquitin ligases (E3s) and deubiquitinases (DUBs), has been difficult to characterize systematically and phenotypically. We performed chemical-genetic CRISPR-Cas9 screens to identify E3s/DUBs whose loss renders cells sensitive or resistant to 41 compounds targeting a broad range of biological processes, including cell cycle progression, genome stability, metabolism, and vesicular transport. Genes and compounds clustered functionally, with inhibitors of related pathways interacting similarly with E3s/DUBs. Some genes, such as FBXW7, showed interactions with many of the compounds. Others, such as RNF25 and FBXO42, showed interactions primarily with a single compound (methyl methanesulfonate for RNF25) or a set of related compounds (the mitotic cluster for FBXO42). Mutation of several E3s with sensitivity to mitotic inhibitors led to increased aberrant mitoses, suggesting a role for these genes in cell cycle regulation. Our comprehensive CRISPR-Cas9 screen uncovered 466 gene-compound interactions covering 25% of the interrogated E3s/DUBs.


Assuntos
Sistemas CRISPR-Cas , Mitose , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ubiquitina , Linhagem Celular , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Curr Genet ; 67(1): 79-83, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33063175

RESUMO

Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, integrating a variety of environmental signals to drive cellular growth. Isr1 is a negative regulator of the hexosamine biosynthesis pathway (HBP), which produces UDP-GlcNAc, an essential carbohydrate that is the building block of N-glycosylation, GPI anchors and chitin. Isr1 was recently shown to be regulated by phosphorylation by the nutrient-responsive CDK kinase Pho85, allowing it to be targeted for degradation by the SCFCDC4. Here, we show that while deletion of PHO85 stabilizes Isr1 in asynchronous cells, Isr1 is still unstable in mitotically arrested cells in a pho85∆ strain. We provide evidence to suggest that this is through phosphorylation by CDK1. Redundant targeting of Isr1 by two distinct kinases may allow for tight regulation of the HBP in response to different cellular signals.


Assuntos
Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Proteínas F-Box/genética , Mitose/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Vias Biossintéticas/genética , Ciclo Celular/genética , Glucosamina/análogos & derivados , Glucosamina/genética , Glicosilação , Hexosaminas/genética , Fosforilação/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
5.
PLoS Genet ; 16(6): e1008840, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579556

RESUMO

The S. cerevisiae ISR1 gene encodes a putative kinase with no ascribed function. Here, we show that Isr1 acts as a negative regulator of the highly-conserved hexosamine biosynthesis pathway (HBP), which converts glucose into uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the carbohydrate precursor to protein glycosylation, GPI-anchor formation, and chitin biosynthesis. Overexpression of ISR1 is lethal and, at lower levels, causes sensitivity to tunicamycin and resistance to calcofluor white, implying impaired protein glycosylation and reduced chitin deposition. Gfa1 is the first enzyme in the HBP and is conserved from bacteria and yeast to humans. The lethality caused by ISR1 overexpression is rescued by co-overexpression of GFA1 or exogenous glucosamine, which bypasses GFA1's essential function. Gfa1 is phosphorylated in an Isr1-dependent fashion and mutation of Isr1-dependent sites ameliorates the lethality associated with ISR1 overexpression. Isr1 contains a phosphodegron that is phosphorylated by Pho85 and subsequently ubiquitinated by the SCF-Cdc4 complex, largely confining Isr1 protein levels to the time of bud emergence. Mutation of this phosphodegron stabilizes Isr1 and recapitulates the overexpression phenotypes. As Pho85 is a cell cycle and nutrient responsive kinase, this tight regulation of Isr1 may serve to dynamically regulate flux through the HBP and modulate how the cell's energy resources are converted into structural carbohydrates in response to changing cellular needs.


Assuntos
Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/biossíntese , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Metabolismo Energético , Glucose/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Mutação , Fosforilação , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo
7.
Elife ; 72018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547882

RESUMO

Although polyubiquitin chains linked through all lysines of ubiquitin exist, specific functions are well-established only for lysine-48 and lysine-63 linkages in Saccharomyces cerevisiae. To uncover pathways regulated by distinct linkages, genetic interactions between a gene deletion library and a panel of lysine-to-arginine ubiquitin mutants were systematically identified. The K11R mutant had strong genetic interactions with threonine biosynthetic genes. Consistently, we found that K11R mutants import threonine poorly. The K11R mutant also exhibited a strong genetic interaction with a subunit of the anaphase-promoting complex (APC), suggesting a role in cell cycle regulation. K11-linkages are important for vertebrate APC function, but this was not previously described in yeast. We show that the yeast APC also modifies substrates with K11-linkages in vitro, and that those chains contribute to normal APC-substrate turnover in vivo. This study reveals comprehensive genetic interactomes of polyubiquitin chains and characterizes the role of K11-chains in two biological pathways.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/genética , Arginina/metabolismo , Regulação Fúngica da Expressão Gênica , Lisina/metabolismo , Poliubiquitina/genética , Saccharomyces cerevisiae/genética , Ubiquitina/genética , Substituição de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Arginina/genética , Transporte Biológico , Ciclo Celular/genética , Engenharia Genética , Lisina/genética , Análise em Microsséries , Poliubiquitina/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
8.
G3 (Bethesda) ; 8(12): 3931-3944, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30377154

RESUMO

The highly conserved DNA damage response (DDR) pathway monitors the genomic integrity of the cell and protects against genotoxic stresses. The apical kinases, Mec1 and Tel1 (ATR and ATM in human, respectively), initiate the DNA damage signaling cascade through the effector kinases, Rad53 and Chk1, to regulate a variety of cellular processes including cell cycle progression, DNA damage repair, chromatin remodeling, and transcription. The DDR also regulates other cellular pathways, but direct substrates and mechanisms are still lacking. Using a mass spectrometry-based phosphoproteomic screen in Saccharomyces cerevisiae, we identified novel targets of Rad53, many of which are proteins that are involved in RNA metabolism. Of the 33 novel substrates identified, we verified that 12 are directly phosphorylated by Rad53 in vitro: Xrn1, Gcd11, Rps7b, Ded1, Cho2, Pus1, Hst1, Srv2, Set3, Snu23, Alb1, and Scp160. We further characterized Xrn1, a highly conserved 5' exoribonuclease that functions in RNA degradation and the most enriched in our phosphoproteomics screen. Phosphorylation of Xrn1 by Rad53 does not appear to affect Xrn1's intrinsic nuclease activity in vitro, but may affect its activity or specificity in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Estabilidade de RNA/fisiologia , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Exorribonucleases/genética , Exorribonucleases/metabolismo , Fosforilação/fisiologia , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato/fisiologia
9.
mBio ; 9(5)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228242

RESUMO

Iron is an indispensable micronutrient for all eukaryotic organisms due to its participation as a redox cofactor in many metabolic pathways. Iron imbalance leads to the most frequent human nutritional deficiency in the world. Adaptation to iron limitation requires a global reorganization of the cellular metabolism directed to prioritize iron utilization for essential processes. In response to iron scarcity, the conserved Saccharomyces cerevisiae mRNA-binding protein Cth2, which belongs to the tristetraprolin family of tandem zinc finger proteins, coordinates a global remodeling of the cellular metabolism by promoting the degradation of multiple mRNAs encoding highly iron-consuming proteins. In this work, we identify a critical mechanism for the degradation of Cth2 protein during the adaptation to iron deficiency. Phosphorylation of a patch of Cth2 serine residues within its amino-terminal region facilitates recognition by the SCFGrr1 ubiquitin ligase complex, accelerating Cth2 turnover by the proteasome. When Cth2 degradation is impaired by either mutagenesis of the Cth2 serine residues or deletion of GRR1, the levels of Cth2 rise and abrogate growth in iron-depleted conditions. Finally, we uncover that the casein kinase Hrr25 phosphorylates and promotes Cth2 destabilization. These results reveal a sophisticated posttranslational regulatory pathway necessary for the adaptation to iron depletion.IMPORTANCE Iron is a vital element for many metabolic pathways, including the synthesis of DNA and proteins, and the generation of energy via oxidative phosphorylation. Therefore, living organisms have developed tightly controlled mechanisms to properly distribute iron, since imbalances lead to nutritional deficiencies, multiple diseases, and vulnerability against pathogens. Saccharomyces cerevisiae Cth2 is a conserved mRNA-binding protein that coordinates a global reprogramming of iron metabolism in response to iron deficiency in order to optimize its utilization. Here we report that the phosphorylation of Cth2 at specific serine residues is essential to regulate the stability of the protein and adaptation to iron depletion. We identify the kinase and ubiquitination machinery implicated in this process to establish a posttranscriptional regulatory model. These results and recent findings for both mammals and plants reinforce the privileged position of E3 ubiquitin ligases and phosphorylation events in the regulation of eukaryotic iron homeostasis.


Assuntos
Adaptação Fisiológica , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Tristetraprolina/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Mutagênese , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Tristetraprolina/genética
10.
Nat Protoc ; 11(2): 291-301, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26766115

RESUMO

Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas/isolamento & purificação , Proteínas/metabolismo , Ubiquitinação , Imunoprecipitação , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Mol Cell ; 60(1): 3-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431023

RESUMO

CDC20 and CDH1 are well-established substrate receptors for the Anaphase Promoting Complex/Cyclosome (APC/C). In this issue of Molecular Cell, Lee et al. (2015) show that these adaptors can also target cell cycle proteins for destruction through a second ubiquitin ligase, Parkin.


Assuntos
Caderinas/metabolismo , Proteínas Cdc20/metabolismo , Instabilidade Genômica , Mitose , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos
12.
Biochemistry ; 54(29): 4423-6, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26161950

RESUMO

The SCF ubiquitin ligase associates with substrates through its F-box protein adaptor. Substrates are typically recognized through a defined phosphodegron. Here, we characterize the interaction of the F-box protein Saf1 with Prb1, one of its vacuolar protease substrates. We show that Saf1 binds the mature protein but ubiquitinates only the zymogen precursor. The ubiquitinated lysine was found to be in a peptide eliminated from the mature protein. Mutations that eliminate the catalytic activity of Prb1, or the related substrate Prc1, block Saf1 targeting of the zymogen precursor. Our data suggest that Saf1 does not require a conventional degron as do other F-box proteins but instead recognizes the catalytic site itself.


Assuntos
Endopeptidases/química , Proteínas F-Box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Endopeptidases/fisiologia , Ligação Proteica , Proteólise , Proteínas de Saccharomyces cerevisiae/fisiologia
13.
PLoS Genet ; 11(6): e1005292, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26091241

RESUMO

The Skp1-Cul1-F box complex (SCF) associates with any one of a number of F box proteins, which serve as substrate binding adaptors. The human F box protein ßTRCP directs the conjugation of ubiquitin to a variety of substrate proteins, leading to the destruction of the substrate by the proteasome. To identify ßTRCP substrates, we employed a recently-developed technique, called Ligase Trapping, wherein a ubiquitin ligase is fused to a ubiquitin-binding domain to "trap" ubiquitinated substrates. 88% of the candidate substrates that we examined were bona fide substrates, comprising twelve previously validated substrates, eleven new substrates and three false positives. One ßTRCP substrate, CReP, is a Protein Phosphatase 1 (PP1) specificity subunit that targets the translation initiation factor eIF2α to promote the removal of a stress-induced inhibitory phosphorylation and increase cap-dependent translation. We found that CReP is targeted by ßTRCP for degradation upon DNA damage. Using a stable CReP allele, we show that depletion of CReP is required for the full induction of eIF2α phosphorylation upon DNA damage, and contributes to keeping the levels of translation low as cells recover from DNA damage.


Assuntos
Dano ao DNA , Proteína Fosfatase 1/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Biossíntese de Proteínas , Estabilidade Proteica
14.
PLoS Genet ; 11(4): e1005162, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25894965

RESUMO

In Saccharomyces cerevisiae, Ndd1 is the dedicated transcriptional activator of the mitotic gene cluster, which includes thirty-three genes that encode key mitotic regulators, making Ndd1 a hub for the control of mitosis. Previous work has shown that multiple kinases, including cyclin-dependent kinase (Cdk1), phosphorylate Ndd1 to regulate its activity during the cell cycle. Previously, we showed that Ndd1 was inhibited by phosphorylation in response to DNA damage. Here, we show that Ndd1 is also subject to regulation by protein turnover during the mitotic cell cycle: Ndd1 is unstable during an unperturbed cell cycle, but is strongly stabilized in response to DNA damage. We find that Ndd1 turnover in metaphase requires Cdk1 activity and the ubiquitin ligase SCF(Grr1). In response to DNA damage, Ndd1 stabilization requires the checkpoint kinases Mec1/Tel1 and Swe1, the S. cerevisiae homolog of the Wee1 kinase. In both humans and yeast, the checkpoint promotes Wee1-dependent inhibitory phosphorylation of Cdk1 following exposure to DNA damage. While this is critical for checkpoint-induced arrest in most organisms, this is not true in budding yeast, where the function of damage-induced inhibitory phosphorylation is less well understood. We propose that the DNA damage checkpoint stabilizes Ndd1 by inhibiting Cdk1, which we show is required for targeting Ndd1 for destruction.


Assuntos
Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Mitose/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Proteína Quinase CDC2/biossíntese , Ciclo Celular/genética , Proteínas de Ciclo Celular/biossíntese , Dano ao DNA/genética , Proteínas F-Box/biossíntese , Regulação Fúngica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biossíntese , Fatores de Transcrição/biossíntese , Ubiquitina-Proteína Ligases/biossíntese
15.
Mol Cell Proteomics ; 14(1): 162-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381059

RESUMO

Although histone acetylation and deacetylation machineries (HATs and HDACs) regulate important aspects of cell function by targeting histone tails, recent work highlights that non-histone protein acetylation is also pervasive in eukaryotes. Here, we use quantitative mass-spectrometry to define acetylations targeted by the sirtuin family, previously implicated in the regulation of non-histone protein acetylation. To identify HATs that promote acetylation of these sites, we also performed this analysis in gcn5 (SAGA) and esa1 (NuA4) mutants. We observed strong sequence specificity for the sirtuins and for each of these HATs. Although the Gcn5 and Esa1 consensus sequences are entirely distinct, the sirtuin consensus overlaps almost entirely with that of Gcn5, suggesting a strong coordination between these two regulatory enzymes. Furthermore, by examining global acetylation in an ada2 mutant, which dissociates Gcn5 from the SAGA complex, we found that a subset of Gcn5 targets did not depend on an intact SAGA complex for targeting. Our work provides a framework for understanding how HAT and HDAC enzymes collaborate to regulate critical cellular processes related to growth and division.


Assuntos
Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo , Acetilação , Histona Desacetilases/metabolismo , Proteoma
16.
Proc Natl Acad Sci U S A ; 111(16): 5962-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24715726

RESUMO

Hst3 is the histone deacetylase that removes histone H3K56 acetylation. H3K56 acetylation is a cell-cycle- and damage-regulated chromatin marker, and proper regulation of H3K56 acetylation is important for replication, genomic stability, chromatin assembly, and the response to and recovery from DNA damage. Understanding the regulation of enzymes that regulate H3K56 acetylation is of great interest, because the loss of H3K56 acetylation leads to genomic instability. HST3 is controlled at both the transcriptional and posttranscriptional level. Here, we show that Hst3 is targeted for turnover by the ubiquitin ligase SCF(Cdc4) after phosphorylation of a multisite degron. In addition, we find that Hst3 turnover increases in response to replication stress in a Rad53-dependent way. Turnover of Hst3 is promoted by Mck1 activity in both conditions. The Hst3 degron contains two canonical Cdc4 phospho-degrons, and the phosphorylation of each of these is required for efficient turnover both in an unperturbed cell cycle and in response to replication stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas F-Box/metabolismo , Histona Desacetilases/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Dano ao DNA , Histona Desacetilases/química , Histonas/metabolismo , Lisina/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
17.
Mol Cell ; 53(1): 148-61, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24389104

RESUMO

We have developed a technique, called Ubiquitin Ligase Substrate Trapping, for the isolation of ubiquitinated substrates in complex with their ubiquitin ligase (E3). By fusing a ubiquitin-associated (UBA) domain to an E3 ligase, we were able to selectively purify the polyubiquitinated forms of E3 substrates. Using ligase traps of eight different F box proteins (SCF specificity factors) coupled with mass spectrometry, we identified known, as well as previously unreported, substrates. Polyubiquitinated forms of candidate substrates associated with their cognate F box partner, but not other ligase traps. Interestingly, the four most abundant candidate substrates identified for the F box protein Saf1 were all vacuolar/lysosomal proteins. Analysis of one of these substrates, Prb1, showed that Saf1 selectively promotes ubiquitination of the unprocessed form of the zymogen. This suggests that Saf1 is part of a pathway that targets protein precursors for proteasomal degradation.


Assuntos
Proteínas F-Box/metabolismo , Lisossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Vacúolos/metabolismo , Proteínas F-Box/genética , Lisossomos/genética , Espectrometria de Massas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Ubiquitinadas/genética , Ubiquitinação/fisiologia , Vacúolos/genética
18.
Mol Cell Biol ; 34(4): 725-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24324011

RESUMO

The 33 genes in the Saccharomyces cerevisiae mitotic CLB2 transcription cluster have been known to be downregulated by the DNA damage checkpoint for many years. Here, we show that this is mediated by the checkpoint kinase Rad53 and the dedicated transcriptional activator of the cluster, Ndd1. Ndd1 is phosphorylated in response to DNA damage, which blocks recruitment to promoters and leads to the transcriptional downregulation of the CLB2 cluster. Finally, we show that downregulation of Ndd1 is an essential function of Rad53, as a hypomorphic ndd1 allele rescues RAD53 deletion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Mitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Humanos , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
19.
Curr Biol ; 23(17): 1638-48, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23973296

RESUMO

BACKGROUND: In eukaryotes, ribosome biosynthesis involves the coordination of ribosomal RNA and ribosomal protein (RP) production. In S. cerevisiae, the regulation of ribosome biosynthesis occurs largely at the level of transcription. The transcription factor Ifh1 binds at RP genes and promotes their transcription when growth conditions are favorable. Although Ifh1 recruitment to RP genes has been characterized, little is known about the regulation of promoter-bound Ifh1. RESULTS: We used a novel whole-cell-extract screening approach to identify Spt7, a member of the SAGA transcription complex, and the RP transactivator Ifh1 as highly acetylated nonhistone species. We report that Ifh1 is modified by acetylation specifically in an N-terminal domain. These acetylations require the Gcn5 histone acetyltransferase and are reversed by the sirtuin deacetylases Hst1 and Sir2. Ifh1 acetylation is regulated by rapamycin treatment and stress and limits the ability of Ifh1 to act as a transactivator at RP genes. CONCLUSIONS: Our data suggest a novel mechanism of regulation whereby Gcn5 functions to titrate the activity of Ifh1 following its recruitment to RP promoters to provide more than an all-or-nothing mode of transcriptional regulation. We provide insights into how the action of histone acetylation machineries converges with nutrient-sensing pathways to regulate important aspects of cell growth.


Assuntos
Histona Acetiltransferases/fisiologia , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Sirtuínas/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Saccharomyces cerevisiae/metabolismo
20.
PLoS Genet ; 8(7): e1002851, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844257

RESUMO

Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) and SCF(Grr1), redundantly target Cln3 for degradation. While the F-box proteins (FBPs) Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Proteínas F-Box , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Ciclinas/genética , Ciclinas/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Fosforilação , Ligação Proteica , Proteólise , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...